LOAN DOCUMENT | | PHOTOGRAPH THIS SHEET | |--------------------|--| | ZE REE | VEL INVENTORY | | SSION N | minary Evaluation 20mm Plastic DOCY 75 | | | Detailed of Establish Approved has predice policies. Detailed of the | | | DISTRIBUTION STATEMENT | | DISTRIBUTION STAMP | DATE ACCESSIONED | | DTIC QUALITY DISP | <u> </u> | | | DATE RETURNED | | 19970226 | 107 | | DATE RECEIVED | IN DTIC REGISTERED OR CERTIFIED NUMBER | | РНОТО | GRAPH THIS SHEET AND RETURN TO DTIC-FDAC | | TIC JUN 90 70A | DOCUMENT PROCESSING SHEET REVIOUS EDITIONS MAY BE USED UNTIL STOCK IS EXPLAUSTED. LOAN DOCUMENT | **26 MAR 1997** ■ 6 MAR 1997 RIA-80-U283 Interim Report 1-MDC-A-76 PRELIMINARY EVALUATION 20MM PLASTIC ROTATING BANDS # TECHNICAL LIBRARY October 1975 Approved for public release; distribution unlimited. Munitions Development and Engineering Directorate U.S. ARMY ARMAMENT COMMAND FRANKFORD ARSENAL PHILADELPHIA, PENNSYLVANIA 19137 Interim Report 1-MDC-A-76 ### PRELIMINARY EVALUATION 20MM PLASTIC ROTATING BANDS AUTOMATIC CANNON TECHNOLOGY PROGRAM DA PROJECT NO. 1W662603AH78.01 BY - D. PHINNEY - B. TRAVOR - W. GADOMSKI - J. BORGER MUNITIONS DEVELOPMENT ENGINEERING DIRECTORATE FRANKFORD ARSENAL PHILADELPHIA, PA 19137 OCTOBER 1975 Approved for public release; distribution unlimited. #### **ABSTRACT** Experimental exploratory evaluations of plastic bands applied to ammunition for the M139 gun consisted of obtaining and evaluating data provided by comparison firings between projectiles having either plastic or copper bands in two ballistic environments, the M139 and M61 gun barrels (Mann) over the temperature range -65°F, +70°F, and +160°F. In all, 120 projectiles were fired, 60 in each environment and 10 of each band material at each conditioning temperature. In addition, photographic observation of representative in-flight projectile firings provided visible evidence of band integrity, projectile stability, and band deformation. #### TABLE OF CONTENTS | Section | • | | Page | |-----------------|---|------|------| | Abstract | | | | | Introduction | |
 | 3 | | Results | |
 | 5 | | Conclusions | |
 | 10 | | Recommendations | |
 | 10 | | References | |
 | 10 | | Distribution | |
 | 28 | | | | | | | | | | | #### LIST OF TABLES | Number | <u>Title</u> | Page | |--------|---------------------------------|------| | I | Description of Material | 4 | | II . | Summary of Test Data | 5 | | III | M139 Gun Ammunition Test Data | 6 | | IV | M50 Series Ammunition Test Data | 7 | #### LIST OF FIGURES | Number | Page | |---|------| | 1 M50 Type Projectile Body (M50 Series Ammunition) | . 11 | | 2 HS HEI-T Type Projectile Body (M139 Gun Ammunition) | 12 | | 3 M50 Series Ammo, Copper Band, -65°F, Photographs | 13 | | 4 M50 Series Ammo, Copper Band, 70°F, Photographs | 14 | | 5 M50 Series Ammo, Copper Band, 160°F, Photographs | 15 | | 6 M50 Series Ammo, Plastic Band, -65°F, Photographs | 16 | | 7 M50 Series Ammo, Plastic Band, -65°F, Photographs | 17 | | 8 M50 Series Ammo, Plastic Band, 70°F, Photographs | 18 | | 9 M50 Series Ammo, Plastic Band, 70°F, Photographs | 19 | | 10 M50 Series Ammo, Plastic Band, 160°F, Photographs | 20 | | 11 M50 Series Ammo, Plastic Band, 160°F, Photographs | 21 | | 12 M139 Gun Ammo, Copper Band, -65°F, Photographs | 22 | | 13 M139 Gun Ammo, Copper Band, 70°F, Photographs | 23 | | 14 M139 Gun Ammo, Copper Band, 160°F, Photographs | 24 | | 15 M139 Gun Ammo, Plastic Band, -650F, Photographs | 25 | | 16 M139 Gun Ammo, Plastic Band, 70°F, Photographs | 26 | | 17 M139 Gun Ammo, Plastic Band, 160°F, Photographs | 27 | | | | #### INTRODUCTION Plastic Rotating Bands have been developed and standardized for use by the U.S. Army on low performance fin stabilized projectiles. None have yet been standardized for high performance 20mm Automatic Cannon Ammunition such as the M50 Series. Current experimental investigations by the U.S. Air Force show promise to the extent of structural integrity of the band material and projectile bandseat geometry interface in M50 20mm projectiles. These encouraging results prompted an evaluation by the U.S. Army of the same design approach applied to 20mm ammunition for the M139 Hispano Suiza Gun. The basic differences between the performance levels as they affect band performance are: - a) The M139 gun utilizes a constant twist rifled barrel as opposed to the gain twist of the barrels for M50 ammunition (M61 Gun) and a heavier and longer projectile than standard M50 ammunition. - b) The bandseat of the M212A1 projectile (the TPT projectile for the M139 system) required modification to accommodate induction bonding of the band material, unmodified Nylon 12, to the projectile bandseat. (See Figure 1, Rev A SKMDC-A-3-75-001 and Figure 2, Rev A, SKMDC-A-3-75-002, for details of the designs of the M212A1 and M50 type projectiles respectively). These experimental exploratory evaluations of plastic bands applied to ammunition for the M139 gun consisted of obtaining and evaluating data provided by comparison firings between projectiles having either plastic or copper bands in two ballistic environments, the M139 and M61 gun barrels (Mann) over the temperature range -65°F, +70°F, and +160°F. In all, 120 projectiles were fired, 60 in each environment and 10 of each band material at each conditioning temperature. In addition, photographic observation of representative in-flight projectile firings provided visible evidence of band integrity, projectile stability, and band deformation. Evaluation data consisted of pressure and muzzle velocity measurements of all firings. Copper band projectiles provided a reference base for plastic band performance at the temperature extremes. The M50 projectile firings provided a reference base for plastic band performance in two ballistic environments, the M139 and M61 gun barrels. All of the firings took place indoors. Velocity was calculated from time data derived from two lumeline screens spaced 50 feet apart with the first screen located 28 feet from the gun muzzle. Inflight projectile photographs were taken 35 feet from the muzzle. Cartridges were conditioned for two hours at the required temperature then fired within 1 to $1\frac{1}{2}$ minutes. The gun remained at ambient temperature. Table I contains a descriptive summary of the test hardware. The base projectile for the M139 gun barrel tests was the M212Al TPT and for the 20mm or M50 Series ammunition, the M55A3 TP. ### TABLE I DESCRIPTION OF MATERIAL | ITEM | M50 SERIES AMMUNITION | M139 GUN AMMUNITION | |-------------------|-----------------------|---------------------| | Cartridge Case | M103 Brass (1) | HS Steel (1) | | Primer | M36A1E1 | M115 (2) | | Projectile | M55A3 (3) | M212A1 (3) | | Propellant Type | WG 870 | CR 8325.3 | | Propellant Charge | 590 grs | 835 grs | | Bullet Pull | 1000 lbs | 1800 lbs | | Mann Barrel | #150 (4) | #163HS820 (5) | #### Notes: - 1. Cases were drilled for recording pressure with copper crusher gages. - 2. Percussion primer containing 34 grs. of FA 959 mix. - 3. Projectiles were crimped in cases and had either standard copper bands or glass filled Nylon 12 bands. - 4. Gain twist. - 5. Constant twist. Plastic rotating bands offer potential for increasing barrel lifeup to two to two and one half times for equivalent ballistic systems and increasing muzzle velocity and muzzle velocity uniformity. State of the art developments project increasing barrel life by a factor of three and one half, lower costs, utilization of non-strategic, materials, and decreased drag. Derived improvements on one hand point (for equivalent ballistic systems) to lower pressures and/or decreased propellant charges. On the other hand pressures could be maintained and propellant charges increased with a derived increase in muzzle velocity. An important consideration in utilization of plastic bands on high rate of reusage (high volume production) ammunition is cost. It has yet to be demonstrated that for the projected life of fielded systems or systems in development that cost controls exists which will provide a high degree of probability that unit cost for plastic banded projectiles will be equal to or less than copper banded projectiles. 4 #### RESULTS Tables II through IV contain a tabulation of the test data. Table II contains a summary tabulation of the velocity and pressure data. High, low, spread, and average values are given for both plastic and copper banded projectiles. Table III contains the detailed data for the M139 gun ammunition (M212A1 type) tests. Table IV contains the detailed data for the M50 Series ammunition firings together with data on the plastic band diameter dimension at $-65^{\circ}F$ and $160^{\circ}F$. The spread (range of variation) of the data recorded for the M139 gun ammunition appears to be greater than that for the M50 Series ammunition This is explained by noting that the basic design was that used for the M50 Series. This design had not gone through an improvement cycle for the M139 gun ammunition. TABLE II SUMMARY OF TEST DATA | | 20MM | M139 GUN A | MMUNITI | ON | | 20MM M50 | SERIES | | |--------|-------|------------------|---------|------------------|--------|-----------------|--------------|-----------------| | TEMP | | STD)
P.P.(cu) | | STIC
P.P.(cu) | CU(S' | TD)
P.P.(cu) | PLAS
M.V. | TIC
P.P.(cu) | | +70°F | 3561 | 53,300 | 3521 | 48,500 | 3345 | 41,500 | 3323 | 42,200 | | EXTR. | 86F/S | 10,600psi | 160F/S | 14,700 | 59F/S | 6,100 | 55F/S | 6,500 | | High | 3619 | 59,700 | 3589 | 55,500 | 3369 | 43,900 | 3355 | 46,200 | | Low | 3533 | 49,100 | 3429 | 40,800 | 3310 | 37,800 | 3300 | 39,700 | | -65°F | 3533 | 54,600 | 3558 | 57,800 | 3230 | 42,500 | 3189 | 40,100 | | EXTR. | 55F/S | 7,900psi | 172F/S | 21,200 | 103F/S | 6,000 | 106F/S | 12,000 | | High | 3562 | 59,700 | 3643 | 68,600 | 3268 | 44,500 | 3241 | 45,900 | | Low | 3507 | 51,800 | 3471 | 47,400 | 3165 | 38,500 | 3135 | 33,900 | | +160°F | 3584 | 49,900 | 3561 | 46,720 | 3446 | 47,700 | 3392 | 47,000 | | EXTR. | 40F/S | 4,400psi | 70F/S | 4,000 | 30F/S | 7,700 | 45F/S | 4,600 | | High | 3604 | 52,900 | 3601 | 48,500 | 3465 | 50,400 | 3413 | 49,100 | | Low | 3564 | 48,500 | 3531 | 44,500 | 3435 | 42,700 | 3368 | 44,500 | TABLE III M139 GUN AMMUNITION TEST DATA | ROUND | TEMP. | PROJ. TYPE | M.V. | P.P. (cu) | REMARKS | |--|--------------------|--|---|---|---------------------------| | 946
947
948
949
950
951
952
953
954
955 | +70 ⁰ F | Copper Rotating
Band (Std.)
AVG | 3545
3540
3559
3574
3533-
3563
3560
3619+
3577
3552 | 49,600
49,100
53,900
59,200
52,300
55,000
53,400
59,700
50,200
50,200 | No unburnt pwd. | | | e
e | EXTREME | 86 F/S | 53,300
10,600psi | • | | 956
957
958
959
960
961
962
963
964
965 | +70°F | Plastic Rotating
Band
AVG
EXTREME | 3429-
3560
3515
3497
3487
3468
3553
3579
3530
3589+
3521
160 F/S | 40,800-
55,500
47,400
51,100
44,200
42,200
49,100
52,600
49,600
52,500
48,500
14,700 psi | No unburnt pwd. | | 966
967
968
969
970
971
972
973
974 | -65 ⁰ F | Copper Rotating
Band (Std.)
AVG
EXTREME | 3545
3540
3545
3511
3507
3562
3529
3526
3543
3525
3533
55 F/S | 51,800
55,500
56,600
51,800
54,500
59,700
54,500
52,900
53,900
55,000
7,900 psi | (See Temperature
Note) | TABLE III (CONT) #### M139 GUN AMMUNITION TEST DATA | ROUND | TEMP. | PROJ. TYPE | M.V. | P.P. (cu) | REMARKS | |--|---------------------|--|---|--|---------------------------| | 976
977
978
979
980
981
982
983
984
985 | -65°F | Plastic Rotating
Band
AVG
EXTREME | 3643
3482
3592
3558
3587
3496
3585
3471
3575
3594
3558
172 F/S | 68,600
48,000
59,200
56,100
60,800
53,900
62,800
47,400
58,700
60,800
57,800
21,200 psi | (See Temperature
Note) | | 986
987
988
989
990
991
992
993
994
995 | +160 ⁰ F | Copper Rotating
Band (Std.) AVG
EXTREME | 3571
3591
3591
3571
3604
3564
3575
3601
3584
3589
3584
40 F/S | 49,100
49,600
52,900
48,500
50,700
49,600
49,800
49,600
49,600
49,900
4,400 psi | (See Temperature
Note) | | 996
997
998
999
1000
1001
1002
1003
1004
1005 | +160°F | Plastic Rotating
Band
AVG
EXTREME | 3549
3562
3553
3601
3531
3540
3543
3563
3584
3580
3561
70 F/S | 46,300
45,700
47,800
48,500
46,000
44,500
46,600
46,800
46,800
46,500
46,720
4,000 psi | (See Temperature
Note) | TABLE IV M50 SERIES AMMUNITION TEST DATA | RD. | TEMP. | PROJ. TYPE | M.V. | P.P.(cu) | REMARKS | |---|-------|---|---|---|-----------------| | 1.
2.
3.
4.
5.
6.
7.
8.
9. | +70°F | Copper Rotating
Band (Std)
AVG
EXTRE | 3339
3327
3366
3361
3316
3365
3310-
3369+
3346
3352
3345 | 43,300
41,500
43,300
43,300
37,800-
39,100
39,700
43,900+
40,300
42,700
41,500
6,100psi | No Unburnt Pwd. | | 11.
12.
13.
14.
15.
16.
17.
18.
19. | +70°F | Plastic Rotating
Band
AVG
EXTREM | 3308
3311
3355+
3316
3300-
3355
3330
3302
3345
3311
3323 | 42,200
41,500
46,200+
40,900
40,300
45,100
43,300
39,700-
42,700
40,300
42,200
6,500 psi | No Unburnt Pwd. | | 21.
22.
23.
24.
25.
26.
27.
28.
29. | -65°F | Copper Rotating
Band (Std) AVG
EXTREME | 3175
3253
3197
3225
3268+
3267
3258
3258
3258
3231
3165-
3230
103 F/S | 38,500-
43,900
39,700
42,700
44,500+
44,200
43,900
44,500
43,300
39,700
42,500
6,000 psi | | TABLE IV (CONT) M50 SERIES AMMUNITION TEST DATA | RD. | TEMP. | PROJ. TYPE | M.V. | P.P.(cu) | P.R.B. MEAS
+70° | SUREMENT
-65° | |--|---------------|---|---|--|---|--| | 31.
32.
33.
34.
35.
36.
37.
38.
39. | - 65°F | Plastic Rotating
Band
AVG
EXTREME | 3217
3230
3228
3190
3154
3241+
3153
3184
3158
3135-
3189
106 F/S | 43,100
42,700
45,900+
40,200
33,900-
43,300
37,800
39,700
38,100
40,100
12,000psi | .8266
.8257
.8252
.8261
.8263
.8250
.8250
.8257 | .8249
.8244
.8236
.8249
.8250
.8243
.8234
.8258
.8246
.8245 | | 41.
42.
43.
44.
45.
46.
47.
48.
49.
50. | +160°F | Copper Rotating
Band (Std) AVG
EXTREME | 3440
3443
3453
3435-
3444
3465+
3445
3435
3460
3443
3446
30 F/S | 45,500
49,600
49,500
47,700
44,400
50,400+
47,400
42,700-
50,200
49,600
47,700
7,700psi | P.R.B. MEASU
+700 | REMENT
+1600 | | 51.
52.
53.
54.
55.
56.
57.
58.
59. | +160°F | Plastic Rotating
Band
AVG
EXTREME | 3368-
3390
3397
3392
3411
3388
3375
3390
3392
3413+
3392
45 F/S | 46,800
46,200
47,400
48,000
44,500-
47,400
45,600
47,400
48,000
49,100
4,600 psi | .8271
.8270
.8270
.8267
.8266
.8230
.8259
.8251
.8245 | .8279
.8283
.8274
.8270
.8285
.8270
.8271
.8260
.8263
.8277 | In flight photographs are reproduced in Figures 3 through 17. Figures 3 through 11 cover the M50 Series ammunition tests while Figures 12 through 17 cover the M139 gun ammunition tests. The first three figures of each set are those for copper banded projectile firings. The remainder are for plastic banded projectile firings. #### CONCLUSIONS These limited experimental tests confirm that plastic banded projectiles will remain structurally sound when fired in Mann barrels in the two selected ballistic environments. Photographic evidence reveals trailing of the plastic band in both ballistic environments at $70^{\circ}F$ and $160^{\circ}F$. Projectile stability does not appear to be degraded. In general, ballistic data satisfied existing specification. #### **RECOMMENDATIONS** Single shot performance data, obtained by means of Mann barrel firings, need to be augmented by both single shot and automatic data obtained by firing tests in service guns, having various degrees of barrel wear and gun temperature environments. Accelerated aging tests of the plastic band/projectile band seat interface are required to provide a reliable estimate of storage or service life. Additional experimental data must be acquired for constant twist barrel firings of M50 type projectiles and upper limits for structural integrity in terms of pressure and velocity. #### REFERENCES USAF Report AFATL-TR-74-106, "Plastic Band Development". 2.AFTER BANDAPPLICATION-REMOVÉ FLASHFROM BODY IN AREAS INDICATED. NOTE:-I.APPROX.WGT-BODY & BAND=970 GRS, NOSE WGT=228GRS, TOTAL WGT=1198GRS. M50 Type Projectile Body (M50 Series Ammunition) FIGURE 1 HS HEI-T Type Projectile Body (M139 Gun Ammunition) 3. AFTER BAND APPLICATION-REMOVE FLASH FROM BODY IN AREAS INDICATED. 2.APPROX.WGT,-BODY¢BAND•I3I4GRS,NOSEWGT•228GRS,TOTALWGT•I542GRS. NOTES:-I. MACHINE BACK EDGE FLAT. # FIGURE 3 M50 Series Ammo, Copper Band, -65°F, Photographs RD 21 RD 22 FIGURE 4 M50 Series Ammo, Copper Band, 70°F, Photographs RD 1 ### FIGURE 5 M50 Series Ammo, Copper Band, 160°F, Photographs RD 42 RD 43 RD 45 FIGURE 6 M50 Series Ammo, Plastic Band, -65°F, Photographs RD 31 RD 32 RD 33 RD 34 RD 35 RD 37 FIGURE 7 #### M50 Series Ammo, Plastic Band, -65°F, Photographs RD 38 RD 39 FIGURE 8 M50 Series Ammo, Plastic Band, 70°F, Photographs RD 11 RD 12 RD 13 RD 14 RD 15 RD 16 FIGURE 9 M50 Series Ammo, Plastic Band, 70°F, Photographs RD 17 RD 18 RD 19 RD 20 FIGURE 10 M50 Series Ammo, Plastic Band, 160°F, Photographs RD 51 RD 52 RD 53 RD 54 RD 55 RD 56 FIGURE 11 M50 Series Ammo, Plastic Band, 160°F, Photographs RD 57 RD 58 RD 59 RD 60 #### FIGURE 12 M139 Gun Ammo, Copper Band, -65^{O}F , Photographs RD 968 RD 970 RD 971 RD 972 # FIGURE 13 $$\rm M139~Gun~Ammo}$, Copper Band, $70^{\rm O}\rm F$, Photographs RD 952 RD 953 RD 954 FIGURE 14 $$\rm M139~Gun~Ammo}$, Copper Band, $160^{\rm O}{\rm F}$, Photographs RD 988 RD 989 FIGURE 15 M139 Gun Ammo, Plastic Band, -65°F, Photographs FIGURE 16 M139 Gun Ammo, Plastic Band, 70°F, Photographs FIGURE 17 M139 Gun Ammo, Plastic Band, 160°F, Photographs RD 997 RD 999 RD 1000 RD 1001 RD 1003 RD 1005 #### DISTRIBUTION Commander US Army Armaments Command Attn: AMSAR-RDT Rock Island, IL 61201 Commander USATACOM Attn: PM MICV System Warren, MI 48090 Director US Army Ballistic Research Lab Attn: AMXBR-IB (3) AMXBR-CA Aberdeen Proving Grounds, MD 21005 St. Louis, MO 63166 Commander US Air Force Armament Lab Attn: DLDG Eglin AFB, FL 32542 Director US Army Air Mobility Rsch & Dev Lab Hill AFB Attn: SAYDL-AS Moffet Field, CA 94035 Commander US Army Armament Command Attn: AMSAR-RDT (2) Rock Island, IL 61201 Commander Naval Air Systems Command Attn: Code 5322 Washington, DC 20360 Director US Army Ballistic Rsch Lab Attn: Mr. Lentz Aberdeen Proving Grounds, MD Commander US Army Armaments Command Attn: AMCPM-VRF Rock Island, IL 61201 Project Manager US Army Materiel Command Production Base Modernization Attn: AMCPM-PBM-M Dover, NJ 07801 Commander USATECOM Attn: AMSAV-ERW St. Louis, MO 63166 Commander USAVSCOM Attn: AMCPM-AAH Commander Naval Weapons Center Attn: Code 4022 China Lake, CA 93555 Commander Attn: Code MMECB Ogden, UT 84406 Commander Rock Island Arsenal Attn: SARRI-L Rock Island, IL 61201 Commander Watervliet Arsenal Attn: SARWV Watervliet, NY 12189 Commander Edgewood Arsenal Attn: SAREA 21005 Aberdeen Proving Grounds, MD 21005 Commander Lake City Army Ammunition Plant Attn: SARLC-ATD Independence, MO 64056 #### DISTRIBUTION (cont'd) ``` Commander Frankford Arsenal Attn: MD, G. Bornheim MDC, S. Miller MDC-A, F. Shinaly W. Gadomski J. Slivovsky B. Siegel W. Squire L. DeStefano MDC-E, D. Phinney R. DiGirolamo C. Johnson MDE, D. Jacobs, (PM MICV) A. Cianciosi MDS-B, S. Kucsan MDS-D, J. Borger MDP-A, J. Quinlan PDM-P, D. Schillinger H. Addison PA, J. Donnelly MT, B. Bushey TSE, R. Cooper ATE, B. Marziano ``` QAA, E. Glowacki Philadelphia, PA 19137